22 research outputs found

    Coordination Cost and Super-Efficiency in Teamwork: The Role of Communication, Psychological States, Cardiovascular Responses, and Brain Rhythms

    Get PDF
    To advance knowledge on the psychophysiological markers of “coordination cost” in team settings, we explored differences in meta-communication patterns (i.e., silence, speaking, listening, and overlap), perceived psychological states (i.e., core affect, attention, efficacy beliefs), heart rate variability (i.e., RMSSD), and brain rhythms (i.e., alpha, beta and theta absolute power) across three studies involving 48 male dyads (Mage = 21.30; SD = 2.03). Skilled participants cooperatively played three consecutive FIFA-17 (Xbox) games in a dyad against the computer, or competed against the computer in a solo condition and a dyad condition. We observed that playing in a team, in contrast to playing alone, was associated with higher alpha peak and global efficiency in the brain and, at the same time, led to an increase in focused attention as evidenced by participants’ higher theta activity in the frontal lobe. Moreover, we observed that overtime participants’ brain dynamics moved towards a state of “neural-efficiency” or “flow”, characterized by increased theta and beta activity in the frontal lobe, and high alpha activity across the whole brain. Our findings advance the literature by demonstrating that (1) the notion of coordination cost can be captured at the neural level in the initial stages of team development; (2) by decreasing the costs of switching between tasks, teamwork increases both individuals’ attentional focus and global neural efficiency; and (3) communication dynamics become more proficient and individuals’ brain patterns change towards neural efficiency over time, likely due to team learning and decreases in intra-team conflict

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Peripheral Biofeedback

    No full text
    corecore